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New 1,3-dioxane type ionic liquid crystal materials having a terminal double bond were
synthesized. The mesomorphic behaviour of these compounds was measured. The principal
features of these compounds are a smectic A phase over a very wide range including
room temperature, and a low isotropic to mesophase transition temperature (for example,
compound 6-1: Cr-22 SmA 25 I).

1. Introduction
There are few reports concerning ionic thermotropic

liquid crystal (LC) compounds having two rings in their
central core. Some LC polymers with pyridinium side
chains [1] or with an alkylammonium salt as a principal
chain have been reported [2]. Stilbazole type ionic LCs
have also been reported [3–5]. Moreover, we have pre-
viously studied 1,3-dioxane , 1,3-oxathian e, and 1,3-dithiane
type new LC materials [4–17], but ionic LC materials
having these structures in their central core have not
previously been encountered, although their possibilities
are interesting. From this point of view, new LC com-
pounds containing the 1,3-dioxane structure were reported
as a Communication [18]. In that report one compound
having a terminal double bond exhibited a markedly lower
isotropic to smectic transition temperature. Therefore,
in this paper we wish to report further on these ionic
LC compounds having a terminal double bond.

Figure 1. Synthetic pathway for compound 6.2. Results and discussion
Compounds 6 were synthesized by the route shown

of the 1,3-dioxane ring. Repeated recrystallization wasin � gure 1.
required to obtain pure trans-isomer. In the 1 H NMRIn the syntheses of compounds 5, both trans- and cis-
spectra for compounds 5, the C-2 proton signals for theisomers were produced, di� ering at the C-5 position
trans- and cis-isomer are 5.50 and 5.55 ppm, respectively,
therefore removal of the cis-isomer could be followed by*Author for correspondence;

e-mail: haramoto@abll.yamanashi.ac.jp the disappearance of its peak in the 1 H NMR spectrum.
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The N-alkylation caused 1 H NMR signals for the
pyridinium proton and C-2 proton of the 1,3-dioxane
ring to be shifted about 0.9 and 0.5 ppm, respectively, to
the lower magnetic � eld. The purity of compounds 6
was checked by the 1 H NMR data and elemental
analyses.

The existence of LC phases, was determined using a
micro-melting point apparatus equipped with polarizers:
compounds 6 exhibited LC phases, so further detailed
measurements were made. The measurement of transition
temperatures and assignment of the mesophases were
carried out by means of the micro melting point apparatus ,
di� erential scanning calorimetry (DSC), and X-ray
di� raction. The phase transition temperatures for com-
pounds 6 are given in tables 1 and 2, which also show
the full structures for all compounds 6. All of these
compounds exhibited the same smectic A phase texture.

Conoscopic � gures and X-ray di� raction supported
the assignment of the compound 6 LC phases as
smectic A. That is, a uniaxial conoscopic � gure was
observed, and the di� raction pattern of a typical
smectic A phase was also obtained (� gure 2). The sharp
peak in the small angle region indicated that the layer
spacings of the phases of compounds 6-7–6-11 which
have a short R ¾ group are about 33–35 AÃ (e.g. com-
pound 6-10: 34.3 AÃ ). In these cases, the molecules seem to
be arranged in a bilayer structure (� gure 3). In the case
of compounds 6-1–6-6, the sharp peak in the small-angle
region indicated that the layer spacings of about 26–29 AÃ

(e.g. compound 6-6; 20.0 AÃ ). These values indicate a
monolayer molecular structure (� gure 4). These latter
compounds have two long alkyl chains R, R ¾ , and a
carbonyl group. The stronger interaction of both terminal
groups seems to lead to the monolayer structure.

The isotropic to mesophase transition temperatures
of compounds 6 increase with the increasing length of
alkyl chain R. Also, compounds 6-8 and 6-10, having a
± (CH2 )8 ± CH5 CH2 R group, instead of the ± C1 0 H2 1 R

group of compounds 6-9 and 6-11, exhibited lower
Figure 3. Molecular arrangement of the new ionic liquid

transition temperatures. In general, isotropic to meso- crystal compound 6-10.

phase transition temperatures tend to be decreased by
the presence of a terminal double bond in the molecule
[19, 20]: this explains our reported observation.

Most ionic LC compounds exhibit a SmA phase
above 100 ß C, stilbazole compounds, for example at
about 120–190 ß C [4]. However, compounds 6 exhibited
the SmA phase around ordinary room temperature.
The most remarkable feature of these new ionic LC
materials having a terminal double bond, is to exhibit a
liquid crystalline phase over a very wide temperature
range including room temperature (e.g. compound 6-1:Figure 2. X-Ray di� raction pattern of the smectic phase of

compound 6-6. Cr Õ 22 SmA 25 I).
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2651,3-Dioxane type ionic L C with double bond

Table 1. Phase transition temperatures for compounds 6-1–6-6.

Compound R n Phase transition temperatures/ß Ca

6-1 C8 H1 7 6

6-2 C1 0 H2 1 6

6-3 C1 1 H2 3 6

6-4 C1 2 H2 5 6

6-5 C8 H1 7 10

6-6 C1 0 H2 1 10

a Cr = crystal, SmA= smectic A, I = isotropic.

3. Experimental 3.2. Synthesis
The identities of starting materials and intermediates3.1. Analysis

IR, 1 H NMR, and the mass spectra were obtained are shown in � gure 1.
with a Hitachi 215 spectrometer, a JNM-PMX 60
spectrometer, and a Hitachi M-80B spectrometer,
respectively. Elemental analyses were carried out with 3.2.1. 4-(5-Alkyl-1,3-dioxan-2-y l)pyridine (5)

To a solution of compound 3 (0.01 mol ) anda Carlo Erba EA 1108. The transition temperatures
and mesomorphic phases were determined by means of 4-pyridinecarbaldehyde 4 (0.01 mol) in anhydrous benzene

(100 ml) was added p-toluenesulfonic acid (10 g). Thea Mitamura Riken micro melting point apparatus
equipped with polarizers and a Mac Science DSC 3100 solution was heated under re� ux for 5 h using a Dean–

Stark trap. The resulting solution was washed with coldsystem. X-ray di� raction was performed with a Rigaku
Rint 2100 X-ray system. 10% aqueous NaHCO3 (200 ml ), dried over anhydrous
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Table 2. Phase transition temperatures for compounds 6-7–6-13.

Compound R R ¾ Phase transition temperatures/ß Ca

6-7 C1 0 H2 1 ± CH2 ± CH5 CH2

6-8 CH2 5 CH± (CH2 )8 ± CH3 Cr 46 SmA 82 I

6-9 C1 0 H2 1 CH3 Cr 90 SmA 210 dec.

6-10 CH2 5 CH± (CH2 )8 ± C2 H5

6-11 C1 0 H2 1 C2 H5 g Õ 24 SmA 152 I

6-12 CH2 5 CH± (CH2 )8 ± C3 H7 Cr 56 I

6-13 CH2 5 CH± (CH2 )8 ± C4 H9 Cr 73 I

a Cr = crystal, g = glass, SmA= smectic A, I = isotropic.

Na2 SO4 , and evaporated in vacuo at 40 ß C. The
crude product was puri� ed by column chromatography
(Wakogel C-300) and recrystallized, yield 30–40%.

IR (CHCl3 ): 2800–3000 (alkyl ), 1600 (pyridine) cm Õ 1 .
1 H NMR (CDCl3 , d) 0.6–2.4 (m, R–CH), 3.4–4.5
(m, 4H, CH2 O), 5.50 (s, 1H, O–CH–O), 7.6, 8.9
(m, 4H, ArH).

3.2.2. N-Alkyl-4-(5-alkyl-1,3-dioxan-2-y l)pyridinium
bromide (6)

A solution of compound 5 (0.004 mol ), alkyl bromide
(0.08 mol ) and phenothiazine (0.05 g) in anhydrous
acetonitrile (20 ml ) was stirred at 50 ß C for 72 h under a
nitrogen atmosphere. After the reaction was complete,
the solution was concentrated under vacuum. The
residue was puri� ed by reprecipitations with hexane,
yield 60–70%.

IR (CHCl3 ): 2800–3000 (alkyl ), 1640 (pyridine) cm Õ 1 .
1 H NMR (CDCl3 , d 0.6–2.6 (m, R–CH, N–CH2 –R ¾ ),
3.5–4.5 (m, 4H, CH2 –O), 5.3 (2H, N–CH2 ), 5.8 (s, 1H,
O–CH–O), 8.5, 10.0 (q, 4H, ArH).

6-1 Yield, 90%. Found: C, 60.83; H, 8.48; N, 2.45%.
Calcd for C2 7 H4 4 NO4 Br: C, 61.59; H, 8.42;
N, 2.66%. Mass 527 (M+ ).

6-2 Yield, 89%. Found: C, 62.97; H, 9.16; N, 2.41%.
Calcd for C2 9 H4 8 NO4 Br: C, 62.80; H, 8.72;Figure 4. Molecular arrangement of the new ionic liquid

crystal compound 6-6. N, 2.53%. Mass 555 (M+ ).
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